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Abstract. We investigate the delocalization–localization transition in a one-dimensional dis-
ordered system with two hybridized bands. The effects of both disorder and interband hybridization
on the energy spectrum and the properties of wavefunctions are studied by using the improved
Dean method and the second-moment formula. The results show that there exist band tails in the
gap regions. All subbands are widened by increasing the disorder strength, whereas when the
interband hybridization increases, some subbands become narrower and the others are widened.
The delocalization of the wavefunctions tends to be enhanced as the hybridization increases.
The localization–delocalization transition of the wavefunctions occurs when the interband hybrid-
ization becomes larger than a critical value. The competition between disorder and hybridization
determines the nature of the electronic states and the energy spectrum.

1. Introduction

Since the pioneering works of Anderson [1] and Mott and Twose [2], electronic and transport
properties of randomly disordered systems have been the subject of enduring interest from
both fundamental and applied viewpoints. One-dimensional (1D) systems are frequently
considered because they turn out to be simpler than those in three dimensions. A great deal
of work has shown that for 1D random potentials all electronic states that are solutions of
the Schr̈odinger equation are, in general, localized. From the scaling consideration, one-
and two-dimensional systems were expected to become insulators [3]. However, there are
some examples of 1D disordered systems where the existence of extended states has been
observed. The 1D liquid model shows the existence of nonlocalized states [4]. Azbel [5]
and Azbel and Soven [6] have demonstrated that extended states exist in some 1D disordered
systems, from which the absence of the localization in experiments can be accounted for
[7]. Recently, in a 1D tight-binding random-dimer model, Dunlapet al [8, 9] have shown
that when one of the site energies is assigned at random to pairs of lattice sites (that is, two
sites in succession),

√
N of the electronic states are delocalized, which is consistent with

the theory of Dunlapet al [10] and Flores [11]. This is a tight-binding model with site-
diagonal disorder and is constructed by randomly inserting a number of identical dimers into
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a purely periodic chain. In our previous paper, the extended states have also been found in
other 1D random models, for example, the 1D site-diagonal disordered tight-binding model
with random periods [12] and 1D site-diagonal tight-binding random-cluster model [13]. The
random-dimer model [8, 9] is also in this class with two atoms in each inserted random
cluster. We show numerically and analytically that in the energy spectrum the positions
of some extended states depend on the size of the random cluster. In addition, in some
particular class of random potentials, the extended states are allowed at selected energies
[14]. Very recently, Kozlovet al showed that some modes of disorder introducing spatial
correlations yielded extended states for particular energies, meaning that the disorder can
also provide constructive quantum interference [15]. If the correlated interactions, such as
electron–phonon interaction, are introduced in the 1D disordered systems with short-range
spatial correlations, the problem will become far more complex [16]; this is beyond the scope
of our present work.

For many realistic systems, several different bands may be important in determining
electronic characteristics. Leavitt [17] have used the two-band model to study electronic states
of semiconductor superlattices, and found that the conduction subband energies, envelope
functions and tunnelling resonance width are highly consistent with the results found elsewhere.
At the same time, the electronic properties in 1D tight-binding disordered or quasiperiodic
two-band systems have also been studied by several workers. By the use of the real-space
renormalization group method, Chakrabartiet al [18] have studied the electronic properties
of a 1D quasiperiodic two-band system; it was found the intra-site interband hybridization
counteracts the effect of disorder. Hiroseet al [19] have found that in GaAs/AlAs quasi-
periodic superlattices, the localization character is enhanced due to the interband hybridization.
On the other hand, Buchet al [20] have studied the density of states for a spatially disordered
two-band system by the use of the single-chain approximation and the effective-medium
approximation, and have obtained a qualitative condition for the transition between the
extended states and the localized states. We have proposed a 1D two-band model with periodic
randomness. The results showed that the delocalization of the electronic wavefunction tends
to be enhanced as intra-site interband hybridization increases [21]. To our knowledge, so far
the effect of inter-site interband hybridization on the electronic properties in 1D disordered
two-band systems has remained unexplored. It is thus desirable to study the combined effect
of disorder and interband hybridization on the electronic properties in 1D disordered two-
band models.

In the present paper, we propose a 1D two-band model with random clusters, having
two hybridizing bands at every site. We attempt to investigate the competition between the
effects of the disorder and the hybridization on the properties of the wavefunctions. The
work is also motivated by current studies of a superlattice with artificial random thicknesses
which exhibits some unusual properties in experiments [22]. The present 1D model can
be used to mimic the structure of these materials in the growth direction and to describe
some principal features of electronic states. To our knowledge, there still is no perturbative
treatment of the 1D two-band model, even for small enough interband hybridization. A
perturbative treatment is also desired for this model. Now, despite the complexity of the two-
band model, the numerical methods developed for the one-band problems can be extended to
this case.

The paper is organized as follows. In section 2 we describe the 1D on-site disordered
model, having two hybridization bands at every site. The density of electronic states is given
in section 3. In section 4 we investigate the effects of disorder and interband hybridization
on the properties of wavefunctions. The delocalization–localization transition is shown in
section 4. The conclusions are given in section 5.
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2. Model

We describe the system by the following tight-binding Hamiltonian [19]:

H =
∑
n

εu(n)|nu〉〈nu| +
∑
n

εv(n)|nv〉〈nv| +
∑
〈n,m〉

t11|nu〉〈mu|

+
∑
〈n,m〉

t12|nu〉〈mv| +
∑
〈n,m〉

t21|nv〉〈mu| +
∑
〈n,m〉

t22|nv〉〈mv| (1)

where: εu(n) andεv(n) are energy levels of orbitalsu andv at siten; andt11, t22 andt12, t21

are the intra-orbital and inter-orbital nearest-neighbour hopping integrals, respectively. We
suppose that the hopping integrals are regular but the orbital levels are in a random configur-
ation described below, corresponding to the diagonal disorder. Therefore, this is a two-band
version of the tight-binding disordered model.

Using two-component vector basis wavefunctions:

|i〉 ≡
(
iu

iv

)
we rewrite the tight-binding Hamiltonian in terms of 2× 2 matrices:

H =
∞∑

i=−∞
Ê(i)|i〉〈i| +

∞∑
i=−∞

[ t̂ |i〉〈i + 1| + t̂ |i〉〈i − 1|] (2)

where

Ê(i) =
(
εu(i) 0

0 εv(i)

)
t̂ =

(
t11 t21

t12 t22

)
.

The lattice is made up of alternating connections of clusters of two species A and B.Ê(i)

takes one of the valueŝEA andÊB , depending on the species which is present at theith site.
We consider a particular random distribution in which the lengths of A segments are fixed and
the lengths of B segments are random. This means that the length of a particular B segment is
a random variable. So the 1D chain arrangement is

. . .AAA . . .BBB . . .AAA . . .BBB . . .AAA . . .BBB . . .

m Li m Li+1 m Li+2

wherem is the length of segment A andLi is the length of theith B segment. We denote
asPB(Li) the distribution function of the lengths of B segments. The form and the extent of
disorder are controlled by this function. Here, we consider a distribution as follows:

PB(Li) =
∑
j

pBj δ(Li − j) (3)

where

δ(l) =
{

1 l = 0

0 l 6= 0

andpBj is the probability of finding a segment of B havingj sites. The whole lattice is formed
by sequential connections of A and B segments.
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3. Density of states

Once the lattice is constructed for given values of the parameters in equation (3), the energy
spectrum can be calculated by the Dean method [23]. For a finite lattice ofN sites, the number
of states with eigenvalues less thanε is the number of negative eigenvalues of the matrices
Û (i) (i = 1, 2, . . . , N), and theÛ -matrices are determined by the following relations:

Û (i) = Ê(i)− εÎ − t̂ tÛ−1(i − 1)t̂ i = 2, 3, . . . , N
Û(1) = Ê(1)− εÎ (4)

whereÛ (i), Ê(i) and t̂ are 2× 2 matrices,̂I is a 2× 2 unit matrix andt̂ t is the transpose
of t̂ . By the use of this theorem, the density of states is obtained and it is shown in figure 1.
Generally, the parameters used areεAu = −εBu = 2.0,εAv = −εBv = 1.0, t11 = t22 = 1.0 and
t12 = t21 = 1.0, which are similar to those of reference [18]. One can see that the density of
states is symmetrically distributed on the two sides of the spectrum. Figure 1(a) and figure 1(b)
display the results for the periodic and random systems, respectively. The density of states
for the periodic system shows the existence of the gap caused by the interband hybridization.
We can see that the Van Hove singularities, characterized asD(E) ∼ 1/

√
E, appear on both

sides of the gaps. For the random system, besides the two subbands appearing near the centre
of the spectrum, other subbands are widened by disorder and there exist band tails in the gap
regions, as expected for amorphous materials. In the density of states, subbandsB1 andB2

merge withC1 andC2 (marked with arrows in figure 1(b)), respectively, and all of the gaps
become narrower or disappear due to the introduced disorder. In figure 1(c) and figure 1(d),
the parameters are the same as those in figure 1(b), except that the inter-orbital hoppingst12(21)

are changed to 0.7 and 1.2, respectively. By comparison of figure 1(b) and figure 1(c), we find
that the two central subbands develop into one band in a symmetric way as the inter-orbital
hybridization decreases. The widening of theA1- andB1-subbands of figure 1(c) is larger than
that in figure 1(b). These results imply that theA1- andB1-subbands become narrower, the
central band is divided into two subbands and the central band gap appears on increasing the
hybridization, whereas the other subbands become wider. The same trend can also be seen in
figure 1(d).

4. Delocalization–localization transition

In the work on the 1D disordered systems, the wavefunction behaviour is considered as the
most solid evidence of localization. To study the localization of 1D disordered systems,
some criteria, such as the first moment, the inverse participation ratio, the structural entropy,
the Thouless number and the second moment, have been introduced and used [25–27]. The
numerical results have indicated that the second moment is successfully used as a single
localization criterion for 1D aperiodic systems [25, 26]. In order to study the effect of interband
hybridization on the properties of eigenfunctions, we will mainly discuss the dependence of
the second moment of the wavefunctions on the interband hybridization. The eigenfunctions
are obtained by the improved Dean method [24]. Ifân denotes the amplitude at siten of a
wavefunction with eigenvalueEj , andâk 6= 0, we can choose|âk| = 1 and the other amplitudes
can be obtained from the recurrence relations

âk±i = −1±k±i t̂ âk±(i−1) for N > k ± i > 1 (5a)

and

1±i = 1/[Ê(i)− Ej Î − t̂1±i±1t̂ ] for N > i + 1> 1 (5b)
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where

1+
N = 1/[Ê(N)− Ej Î ] 1−1 = 1/[Ê(1)− Ej Î ]

(where1±i is a 2× 2 matrix) and

âk =
(
au(k)

av(k)

)
.

By adding the state indexj to the subscript of̂ak, the normalized eigenfunction with
eigenvalueEj can be expressed as

|ψj 〉 =
N∑
i=1

âij |i〉. (6)

If we take the site spacing as the unit of length, the second moment of the wavefunctions [25]
is defined as

Sj = 1

N

[ N∑
i=1

i2|âij |2 −
( N∑
i=1

i|âij |2
)2]1/2

. (7)

In order to demonstrate the extended characteristics of the states, we calculated the wave-
functions of a sample model withm = 3. The length of lattice considered is 3000. For a
given energyEj = −2.40, the wavefunction of an unscattered state is shown in figure 2.
From figure 2, it is obvious that the wavefunction is delocalized in this disordered system,
in agreement with the situation in [20, 21] and in the single-band case of [13]. This is due
to the specific short-range spatial correlation in the disorder for the system. On the other
hand, for the localization of the electronic states in 1D disordered systems, people usually
study the dependence of the localization on the energy and size. For example, if one wants
to calculate the transmission property of the electronic states as a function of energy in the
above-mentioned system, one can find that the transmission coefficient is almost unity at the
energyEj = −2.40. However, here our focus is on how the competition between disorder and
hybridization determines the properties of the electronic states in the 1D two-band disordered
system. So, we mainly discuss the effect of the interband hybridization on the behaviour of
the wavefunction for the fixed system and some definite energies. In addition, if the interband
hybridization (t12 andt21) is equal to zero, the 1D two-band model is reduced to two independent
1D single-band models, some particular delocalized wavefunctions still exist at some fixed
energies, similar to that in figure 2, which has been very thoroughly treated [13]. As mentioned
above, the second moment can be readily used to measure the localization of the wavefunction
[25, 26]. Next, the second moments as a function of interband hybridization are numerically
calculated for different energies. The result is shown in figure 3. ForEj = −2.50, figure 3(a)
shows that the second moment increases when the hybridization increases. The delocalization
of the electronic wavefunction is enhanced as the interband hybridization increases. It is also
found that the second moment increases more steeply as the interband hybridization increases
up to the value 0.7, and then when the interband hybridization becomes larger than a value
1.0, the second moment reaches a maximum and almost becomes a constant, 1/

√
12, which

is just the critical value for the extended states in a 1D aperiodic system [26]. It has been
pointed out thatSj = 1/

√
12 in the case of delocalized wavefunctions and decreases to a small

value in the case of localized states [26]. Therefore, we find that at the energyEj = −2.50,
the delocalization–localization transition of the electronic states appears at the hybridization
value 1.0. For another energyEj = −3.00, we show in figure 3(b) that when the interband
hybridization increases the second moment also increases at first, then increases more steeply
as the hybridization exceeds the value 0.9 and finally reaches the critical value 1/

√
12 at the
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Figure 1. The density of states for the 1D model with 3000 sites. (a) The periodic system and
the parameters in equation (1) areεAu = −εBu = 2.0, εAv = −εBv = 1.0, t11 = t22 = 1.0 and
t12 = t21 = 1.0. A1, B1, C1, A2, B2 andC2 indicate different subbands. (b) The parameters in
equation (3) arepBi = 1/3 for 16 i 6 3,pBi = 0 otherwise and the parameters in equation (1)
are the same as those in (a).A1, B1,C1,A2, B2 andC2 are in agreement with those in (a). (c) The
parameters in equation (3) are the same as those in (b) and the parameters in equation (1) are
the same as those in (a) except thatt12 = t21 = 0.8. (d) The parameters in equation (3) are the
same as those in (b) and the parameters in equation (1) are the same as those in (a) except that
t12 = t21 = 1.2.

hybridization value 1.2, which is similar to the behaviour in figure 3(a). This indicates that
for this energy state, the transition appears at the hybridization value 1.2. We also calculate
the second moment for other energies and find that the same behaviour appears if the energy
is located in the smooth part of the spectrum. This means that some wavefunctions become
delocalized, which is consistent with the conclusion of references [20, 21]. In addition, in the
energy located near the edge of subband, e.g., the energy of the state in figure 3(b), for small
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Figure 1. (Continued)

hybridization the state is completely localized and the second moments are almost zero, whereas
for the energy located near the band centre like that in figure 3(a), the second moments are finite
for small hybridization. These results indicate that the delocalization of wavefunctions near
the band centre is more enhanced than that of edge states under the same degree of disorder. If
the energy is located in the other part of the energy spectrum, we find that the second moment
also increases but cannot reach the critical value as the interband hybridization increases.
This implies that some wavefunctions remain localized but the localization is weakened with
increasing hybridization. Since the interband hybridization enhances the tendency towards
delocalization, whereas the disorder tends to produce the opposite effect, the competition
between them determines the nature of the electronic wavefunctions and the energy spectrum.
In addition, the fluctuations in the curves of the second moments in figure 3 can be attributed
to the finite size of the system. At different interband hybridization but with the same energy
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Figure 2. The wavefunction of the 1D model with 3000 sites with energyEj = −2.4. The
parameters are the same as those of figure 1(b).

Ej , the wavefunctions have different repeated periods. When the length of the system is not
equal to an integer times the period of the wavefunctions, different amplitudes of envelope
wavefunctions appear at the end of the system which lead to the fluctuations of the second
moment. On the other hand, if the wavefunctions are completely localized in the finite sample,
the amplitudes of the wavefunctions at the end are almost zero; the fluctuations are very small
as can be seen from the second moment at small hybridization in figure 3(b). Furthermore,
in our calculations, we find that the behaviour of the second moment is different for different
choices of disorder. If the degree of disorder is increased, the second moment approaches the
critical value 1/

√
12 at larger hybridization strength. This again confirms that the competition

between the disorder and the interband hybridization determines the nature of the electronic
wavefunctions and the energy spectrum.

5. Conclusions

We investigate the delocalization–localization transition in a particular 1D diagonal disordered
model which has two hybridized bands. By using the improved Dean method and second-
moment formula, the effects of both disorder and interband hybridization on the energy
spectrum and the properties of wavefunctions are studied. The results show that for the
random system, there exist band tails in the gap region, as expected for amorphous materials.
In the spectrum of the density of states, two pairs of subbands with a smaller gap merge into
continuous bands, and all subband gaps become narrower on introducing the disorder. All
subbands are widened with increasing degree of disorder. On the other hand, the symmetrical
A1- andA2-subbands become narrower, and other subbands become wider when interband
hybridization increases. We also show that the delocalization of wavefunctions tends to be
enhanced as the hybridization increases. The localization–delocalization transition of wave-
functions appears when the interband hybridization becomes larger than a critical value. Since
the interband hybridization enhances the tendency towards delocalization, whereas the disorder
tends to produce the opposite effect, the competition between them determines the nature of
the electronic wavefunctions and the energy spectrum.
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Figure 3. The second moment of the wavefunctions as a function of the interband hybridization.
The black triangles represent the numerical results, which are fitted by the solid curves. The
parameters except fort12 and t21 are the same as those in figure 1(b). (a)Ej = −2.5 and
(b)Ej = −3.0.
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